MocoSFL: Enabling Cross-Client Collaborative Self-Supervised Learning

Rebecca Salganik

July 2024

Agenda

- Motivation
- Background
 - Federated Learning (FL)
 - Self Supervised Learning (SSL)
- Problem Definition
- Methodology
- Experimental Findings
- Conclusion

Motivation

- Users want to train personal, local models on their own data without sharing this data with other users → Federated Learning (FL)
- Some scenarios have scarce or non-existent labels → Self-Supervised Learning (SSL)
- Combining FL with SSL is the focus of this work

Federated Learning

• In the classic ML setting, a single dataset is fed to a single model

Federated Learning

- In the classic setting, a single dataset is fed to a single model
- However, this requires all the data to be pooled in a single collection
- This is not compatible with private industrial settings where users don't wish to share their data

Federated Learning

- Federated Learning (FL) allows users to keep their data private
- Ex: FedAvg¹ -- users train a local version of their model and updates occur by sharing weights with a global model

Self Supervised Learning

• In the classic setting, each data point is associated with a label

Jaguar

Self Supervised Learning

- In the classic setting, each data point is associated with a label
- But labeling is expensive and some scenarios have scarce or non-existent labeling
- Self supervised learning (SSL) aims to avoid reliance on labels

?

Original

Permuted Version

Self Supervised Learning

- The most popular form of SSL is contrastive learning
- Contrastive learning treats each individual data point as an independent class and trains a model to recognize it irrespective of permutations¹

Self Supervised Learning

• The loss for contrastive learning can be formulated as:

$$\ell_{Q,K,N} = -\log \frac{exp(Q \cdot K^+ / \tau)}{exp(Q \cdot K^+ / \tau) + \sum_{N \in M} exp(Q \cdot N / \tau)}$$

where Q is a query key, K^+ is a positive key, and N is a negative key

Problem Definition

- The purpose of this work is to define a method for collaborative learning ie combining FL and SSL for image classification.
- SOTA methods for combining FL + SSL have two key drawbacks:
 - 1. Large memory requirements
 - 1. SSL requires a models with a large number of parameters, otherwise accuracy degrades
 - 2. Low accuracy with large client base
 - 1. SSL requires a lot of data per client in order to maintain bank of "hard" negative examples

1 Zhuang et al. (2022). Divergence-aware federated self-supervised learning. ICLR.

MocoSFL – Overview

- Three key contributions:
 - 1. Latent vectors sent by all clients are concatenated before being processed by the server-side model
 - 2. Model uses a shared feature memory which is updated by positive keys contributed by all clients in each step of training
 - 3. Non-IID performance is improved by using higher synchronization frequency

- Each client has a local model
- Given input X_i , the local model performs augmentation to generate a query $X_{q,i}$ and positive key $X_{k^+,i}$

MocoSFL

MocoSFL

- Given input X_i , the local model performs augmentation to generate a query $X_{q,i}$ and positive key $X_{k^+,i}$
- These are concatenated over all the clients into A_{a} and $A_{k^{+}}$

Local models can train using **micro-batches** to reduce their memory consumption without degrading overall accuracy Client i $A_{k^+,i}$ Server DeQueue $\rightarrow X_{k^+,i}$ K^+ N Augmentation $X_{\overline{i}}$ Client *i* momentum **Shared Feature Memory** $X_{q,i}$ $A_{q,i}$ EnQueue Concatenate Client *i* online InfoNCE K^+ A_{k}^{+} Wireless communication Loss Client j Server momentum $A_{k^+,j}$ $\rightarrow X_{k^+,j}$ Concatenate A_q Q Augmentation Client *j* momentum $X_{q,j}$ $A_{q,j}$ avg Server online 3 **Frequent Sync** Client *j* online

MocoSFL

Concatenation reduces the hardware resource requirements on the local model

MocoSFL

- Positive keys from previous batches become negative keys for the next batch
- Keeping shared feature memory on server mitigates the large data requirements for SSL
- See Eq. 2 for a bound on the hardness of each new query

MocoSFL

- Since local models are lightweight, their weights require less overhead
- Local models can be synched after every batch, lowering divergence and improving generalization to non-IID setting

MocoSFL – Privacy Concerns

• Concatenation of latent vectors creates vulnerability to Model Inversion Attacks (MIA)

MocoSFL – Privacy Concerns

TAResSFL:

- (a) Server model is pre-trained on subset of training data combined with out of domain data then transferred to clients
- Client side models are frozen (b)

(b) Transfer step: MocoSFL + TAResSFL

Experimental Results – Non-IID Performance

Method	CIFA	AR-10	CIFAR-100		
	$N_C = 5$	$N_C = 20$	$N_C = 5$	$N_C = 20$	
FL-BYOL (Zhuang et al., 2022) MocoSFL-1 (ours) MocoSFL-3 (ours)	83.34 87.81 87.29	75.77 85.84 85.32	61.78 58.78 57.70	52.78 57.80	

- In cases with high client count, MocoSFL has significant gains
- However, in cases with higher task complexity, FL-BYOL outperforms MocoSFL

Experimental Results – Client Count Scaling

Method	Dataset	IID			non-IID		
		$N_C = 100$	$N_C = 200$	$N_C = 1000$	$N_C = 100$	$N_C = 200$	$N_C = 1000$
MocoSFL-1	CIFAR-10	87.29	87.38	87.51	87.71	87.39	86.46
	CIFAR-100	58.91	59.15	58.85	59.22	58.90	56.75
	ImageNet-12	92.02	91.73	91.76	92.24	91.44	91.28
MocoSFL-3	CIFAR-10	87.29	87.15	87.25	87.10	85.22	84.75
	CIFAR-100	58.41	58.30	58.80	58.69	58.59	56.88
	ImageNet-12	92.08	92.24	92.02	92.60	91.83	91.28

• As the number of clients scales up, the performance remains relatively stable

Experimental Results – Privacy Evaluation

Method Metric		Target Data			Ground-
		0.0%	0.5%	1.0%	Truth
MocoSFL-1	Accuracy (%) Attack MSE	$81.14{\pm}0.47$ $0.039{\pm}0.005$	$80.78 {\pm} 1.34 \\ 0.033 {\pm} 0.014$	$\begin{array}{c} 79.96{\pm}2.96\\ 0.039{\pm}0.002\end{array}$	MocoSFL
MocoSFL-3	Accuracy (%) Attack MSE	$81.19{\pm}2.32$ $0.045{\pm}0.003$	$80.51{\pm}1.49 \\ 0.035{\pm}0.003$	83.13±2.40 0.039±0.002	MocoSFL +TAResSFL

- Applying TAResSFL achieves good accuracy while having high MIA resistance
 - With TAResSFL the reconstructed pictures are harder to identify and more blurry
- Trade-off between layer cutoff for attack resistance and accuracy

Conclusion

- Goal:
 - Design a federated learning system that can be used for self-supervised learning on computer vision tasks
- Contributions:
 - MocoSFL, a novel FL-SSL model that uses a small client-side model, latent vector concatenation, and feature sharing
 - Addresses two major challenges in achieving high accuracy in FL-SSL schemes for cross client applications: (1) Large data requirement, (2) large hardware requirements
 - Addresses communication overhead and privacy issues inherent to SFL-based schemes